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A NOTE ON THE KAZDAN-WARNER TYPE
CONDITIONS

WENXIONG CHEN & CONGMING LI

Abstract

We consider prescribing Gaussian curvature on a 2-sphere S2%. There
are well-known Kazdan-Warner and Bourguinon-Ezin necessary condi-
tions for a function X to be the Gaussian curvature of some pointwise
conformal metric. Then are those necessary conditions also sufficient?
This is a problem of common concern and has been left open for a few
years. In this paper, we answer the question negatively. First, we show
that if X is rotationally symmetric and is monotone in the region where
K > 0, then the problem has no rationally symmetric solution. Then
we provide a family of functions K satisfying the Kazdan-Wamer and
Bourguinon-Ezin conditions, for which the problem has no solution at
all. We also consider prescribing scalar curvature on S” for n > 3. We
prove the nonexistence of rationally symmetric solution for the above-
mentioned functions.

1. Introduction

Given a continuous function K(x) on a compact surface §, it is in-
teresting to know that whether it can be the Gaussian curvature of some
metric. In practice, one often seeks the unknown metric by picking a basic
metric g,, and then pointwise conformally deforms it to the desired met-
ric g. If welet g = e g, then it is equivalent to solving the following
nonlinear elliptic equation:

(1.1) ~Agu+ Ko(x) = K(x)e™,  xes,
where A, and K,(x) are the Laplacian and the Gaussian curvature of g, .
In the last few years, a lot of work has been done to understand this (cf.
[21,---, 18], [t1], --- , [19] and the references therein).

For equation (1.1) to have a solution, the function K(x) must satisfy
the obvious Gauss-Bonnet sign condition

(1.2) /; K(x)e™ dx = 2nx,

Received November 9, 1993. The first author was partially supported by NSF Grant DMS-
9116949. The second author was partially supported by a CRCW Junior Faculty Fellowship
of the University of Colorado at Boulder.



260 WENXIONG CHEN & CONGMING LI

where y is the Euler characteristics of the surface S'.
On the standard sphere S°, equation (1.1) reads as

(%) —Agu+1=K(x)e™, xeS°.

Now, besides (1.2), there are other well-known obstructions, the Kazdan-
Warner conditions [16]

(1.3) / VK-Voedd, =0, i=1,2,3,
SZ

where ¢, are the first spherical harmonic functions.

These conditions give rise to many examples of K(x) for which (x) has
no solution. In particular, a monotone rotationally' symmetric function K
admits no solution.

Later, Bourguignon and Ezin [1] generalized the condition to

(1.4) | /S X(K)e™dA, =

where X is any conformal vector field on s2.

On the other hand, many authors have found various sufficient condi-
tions for (x) to have a solution. However, there is still an obvious gap
between the necessary ones and the sufficient ones. Then what are the nec-
essary and sufficient conditions? In virtue of (1.2), (1.4), one may probably
guess the following condition: '

(1.5) K > 0 somewhere and there exists u such that (1.4) holds

would be such a candidate.
Let us first consider the case where K is rotationally symmetric. Con-
ditions (1.5) become

(1.6) K > 0 somewhere and VK changes signs.
Now, ‘
(1.7) is (1.6) a sufficient condition for (x) to have a solution?

This has been an open problem for many years (cf. [15]).

In their recent paper, Xu and Yang [19] presented a family of rotation-
ally symmetric function K, satisfying (1.6) and having a monotone limit.
They showed that for ¢ small, (x) cannot have a rotationally symmet-
ric solution with K = K, by proving a compactness of such a family of
solutions u,. This result is interesting. It shed some doubt on the suf-
ficiency of the condition (1.6). However, one does not know if there are
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any nonrotationally-symmetric solutions for their functions K, , hence it
is still not clear if (1.6) can be sufficient or not.

In this paper, we give the question (1.7) a negative answer. We provide
a family of rotationally symmetric functions K satisfying (1.6) for which
equation (*) has no solution at all.

First we show the nonexistence of rotationally symmetric solution.

Theorem 1. Let K be rotationally symmetric. If

(1.8) K is monotone in the region where K >0,

then problem (x) has no rotationally symmetric solution.

This generalizes Xu and Yang’s result, since their family of functions
K, satisfies (1.8).

Although we believe that for all such functions K, there is no solution
at all, we are not able to prove it by now. However, we can show this for
a family of such functions.

Theorem 2. There exists a family of functions K satisfying the Kazdan-
Warner type conditions (1.6), for which the problem (x) has no solution.

This theorem gives (1.7) a negative answer. (Please see §3 for the details
of such family of functions.)

In [19], Xu and Yang also proved

Proposition. Let K be rotationally symmetric. Assume that

(i) K is nondegenerate;

(ii)
(1.9) VK changes signs in the region where K > 0.

Then problem (x) has a solution.

The above results and many other existence results tend to lead people
to believe that what really count is whether VK changes signs in the region
where K > 0. And we guess that for rotationally symmetric K , condition
(1.9), instead of (1.6), would be the necessary and sufficient condition for
(¥) to have a solution. In order to confirm this guess, one needs to work
on two aspects:

(i) Drop the nondegeneracy assumption on K in Xu and Yang’s exis-
tence result.

(ii) Improve our Theorems 1 or 2. Show that for functions satisfying
(1.8), there is no solution at all.

We also consider prescribing scalar curvature problems in higher dimen-
sions. On S", n > 3, one would like to know what kinds of functions
R(x) can be realized as the scalar curvature of some pointwise conformal
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metric. This is equivalent to solving the following equation:

nn-2)  n-=2 (n+2)/(n—2) n
3 u_4(n_l)R(x)u , xes,

where A, is the Laplacian of the standard § ",

There are similar obstructions for the solution of (xx) found by Kazdan
and Warner [16] and then generalized by Bourguignon and Ezin [1]. In
the case where R is rotationally symmetric, the obstructions read as

(%) —Aou +

R > 0 somewhere and VR changes signs.

Again one would like to ask: Is this a sufficient condition? We incline to a
negative answer. We can prove the nonexistence of rotationally symmetric
solutions.

Theorem 3. Let R be rotationally symmetric. If R is monotone in the
region where R > 0, then equation (xx) has no rotationally symmetric
solution.

At this stage, we are not able to prove that for some of these kinds of
functions R, there is no solution at all; however we guess one should be
able to do so. ,

The authors would like to thank Professor Kazdan for helpful discus-
sions.

2. Proof for nonexistence of radial solutions

In this section, we prove

Theorem 1. Let K be rotationally symmetric. If K is monotone in
the region where K > 0, then problem (x) has no rotationally symmetric
solution.

Progf. For simplicity, we make a stereographic projection from 52 to
a Buclidean plane R? , then (%) is equivalent to the following equation:

(¥) —Au = R(x)e", x € R ,

where R(x) =2K(x), A= <92/6x12 +62/8x22 , and u is another unknown
function satisfying limy, _, . (u(x)/In|x]) = —4.

We assume that R is bounded, continuous and radially symmetric,
R = R(r) with r = |x|. Without loss of generality, we may also assume
that there is r;, > 0, such that

(i) R(r)<0 for r<r,,

(ii) R(r)>0 and R'(r)>0, R'(r)#0 for r>r,.

We are going to show that equation (*) has no radial solution.
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Assume to the contrary, there is a function u# = u(r) that solves (¥).
Then multiply the both sides of (*¥) by x-Vu and integrate over the region
Q, = BA(O)\BrO(O) for A > r,. By a straightforward calculation, one can
see that the left-hand side becomes

(2.1) / <1x 1/|Vu| - %x Vu) ds,
20, \2 ov
and the right-hand side becomes
(2.2) —2/ Re“dx-—/ x.VRe“dx+/ x-vRe"ds,
Q, Q, aQ,

where v is the unit outward normal vector of €, .
Now let 4 — co. By the asymptotic behavior of # at infinity # ~
—4Inr, we have

1 ou
/aB (2 |Vu| ~ 5,5 Vu) ds — —16m.

A

Consequently, (2.1) is reduced to
(2.3) 7zr§(u'(r0))2 - lé6x.

While on the other hand, applying the Gauss-Bonnet formula fg. Re" dx
= 8n, and the asymptotic behavior of u atinfinity ¥ ~ —4Inr, and noting
that R =0 on aB,O , we see that (2.2) takes the form

(2.4) ~l6m+2 Re" dx — / x-VRe"dx.
B, (0) R\B

It follows from (2.3) and (2.4) that

7rr§(u'(r0))2 =2 Re“dx — / Xx-VRe"dx,
B, (0) R:\B

which is impossible, since the left-hand side is nonnegative while the right-
hand side is negative. Therefore, equation (¥) cannot have a radial solu-
tion. '

3. Symmetry of solutions

In this section, we prove Theorem 2. As we did in §2, for s1mp11c1ty,
we make a stereographic projection and consider the equation

(*) —Au = R(x)e , xeR.
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We are going to find a family of functions R satisfying both Kazdan-
Warner and Bouguignon-Ezin conditions, for which equation (¥) has no
solution. Based on our result in §2, what we need to show here is that for
such a family of functions, all the solutions of (¥) are radially symmetric.
In order to apply our Theorem 1, we still assume that R is bounded,
continuous, and, that

(3.1) R = R(r) and R is monotone in the region where R is positive.

We shall use the method of moving planes to prove
Theorem 3.1. Assume that R satisfies

(3.2) R(r)+2rR(r) <0.

Then all the solutions of (%) are radially symmetric about the origin.

Remark. A candidate for such function R satisfying the Kazdan-
Warner type condition (1.6) and (3.1) and (3.2) would look like the fol-
lowing: It is positive and monotone decreasing for r < r,, it is negative
and its derivative changes signs in the region where r > r,, and it satisfies
(3.2). The following is one of the examples of such functions:

_’-2 _ <

R(r) = { e_r2 I/e forr<a,
e —aler forr>a,

where ry =1, and a is a sufficiently large number.

In order to apply the method of moving planes to equation (¥), it
requires the function R be monotone decreasing. However, we want our
R to satisfy conditions of Kazdan-Warner type; hence it must not be
monotone in the whole domain.

To circumvent this difficulty, we introduce a new unknown function
v(x) = u(x) — [xl2 . Obviously, v satisfies the following equation:

(3.3) —Av —4=Re".

Now our new function R(r) = R(r)e’2 is monotone decreasing due to
assumption (3.2). Then we can apply the method of moving planes similar
to our previous paper [10] to prove that v must be radially symmetric
about the origin. Therefore, u must also be radially symmetric. For
completeness, we still present our proof in the following.

Toprove the symmetry, we move a family of lines which are orthogonal
to a given direction from negative infinity to a critical position, and then
show that the solution is symmetric in that direction about the critical
position. We also show that the solution is strictly increasing before the
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critical position. Since the direction can be chosen arbitrarily, we conclude
that the solution must be radially symmetric.

Assume that v(x) is a solution of (3.3). Without loss of generality, we
show the monotonicity and symmetry of the solution in the x, direction.

For A€ R, let T, = {(x;, x,)|x, <4} and T, = 0%, = {(x,, x,)|x, =
1}. Let xt = (24 - x,, x,) be the reflection point of x = (x,, x,) about
the line 7). :

Define w,(x) = v(xl) —v(x) and w,(x ) w,(x)/g(x) with g(x) =
In(—x, + 2) + In(1 + xl2 + x%). In the following we. assume that 4 < 0
and x.€ X,. Obviously w, and w, are well deﬁned and g(x)> 0. A
stra1ghtforward caleulation yields that-

(34) Aw,(x)+Rx ><expw<x>>wl<x>=<§<x>—§<x{>>expv<x‘>so,

where y(x) is some real number between v(x) and v(xl). Consequently
(3.5) AW, + éVg VW, + (ﬁ(x)exp v+ égg) w, <0.

We are going to show that w (x) = 0. To this end, we need the fol-
lowing simple version of the

Maximum Principle and the Hopf Lemma: Assume that v satisfies
Av+bv,+cv <0 and v>0 ina domam Q of R? with smooth boundary
oQ and v=0 on Q.

1. If v vanishes at some point in Q, then v =0 in Q

2.Ifv 20 in Q, thenon 0Q, the exterior normal derivative 0v/0n <
0. .

We also need ‘

Lemma 3.2. (i) For each fixed A, w,(x) — 0, as |x| — oo. ‘
(ii) There exists Ry, > 0 independent of A, such that if x° isa minimum
point of W,(x) and W,(x°) < 0, then |x°| < R,.

Proof. (i) One can easily see that as |x| — oo, g(x) — +oo. While
on the other hand, by the asymptotic behavior of v, w,(x) is bounded.
Hence W,(x) — 0 as |x| — oo.

(i1) To prove this part we first note that

Ag 1 -1 4
o 7, .2 7T 7, 02
&  In(—x; +2)+In(1 +x7+x5) [(x; —2) (1 + x7 +x3)

BN . A X
and ://(xo) < max{v(xo) , v(xo )le = v(xo). Then the asymptotic behav-
ior of v implies that there exists some number R, , such that

R(x"yexpy(x’) +Ag/g <0 if |x°| > R,.
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Now conclusion (ii) of Lemma 3.2 follows directly from equation (3.5).

Proof of Theorem 3.1.

- Step 1. Let R, be given in Lemma 3.2. We will show that 1f A<-R,,
then w,(x) >0 for xX€X,.

In fact, suppose to the contrary, there is some x € X,, such that
w,(x) < 0. Then by (i) of Lemma 3.2, lim w,(x) = 0; hence

Jx]{—+o0
one can find a point x° € X, such that wl(xo) = minzl w, < 0. This
contradicts (ii) of Lemma 3.2.

Step 2. Let A, be the largest possible value of 4 such that w,(x) >0
for x € £, and A < 4,. Then Ay = 0. We show this by contradiction.
Suppose 4, < 0. Then by (3.4) and the fact that R is not a constant
(since R is not monotone), applying the maximum principle and the Hopf
Lemma, we have w; >0 and hence w, >0 in X, and 90w, /8x, <0
on T 0 0 0 0

On the other hand, by the definition of A,, there exists a sequence of

real numbers A, \, 4, such that @ 2 (x) < 0 for some x € sz . Let x*
be a minimum point of w, . Then W, (xk) < 0 and lek (xk) =0 for
k=1,2,3,..., so Lemma 3.2 implies that lxk| < R,; hence there is
a subsequence of {xk} converging to some point x% e R%. Obviously
x’e L UT,, W, (x%) <0 and leo(xo) = 0. This is impossible.

Step 3. By moving the family of lines 7, from negative infinity to the
origin we conclude that wy(x) > 0, or, in other words, v(-x,, X,) <
v(x,, x,) for x; > 0. Then using an entirely similar approach, moving
the family of lines 7, from positive infinity to the origin, we can show
that v(—x,, x,) > v(x,, x,). Therefore v(-x,, x,) = v(x,, Xx,), which
completes the proof of the theorem.

4. Higher dimensional case

In this section, we prove

Theorem 3. Let R be rotationally symmetric. If R is monotone in
the region where R > 0, then problem (xx) has no rotationally symmetric
solution.

Proof. As in §2, for simplicity, we make a stereographic projection
from S” to R". Then (xx) is equivalent to the following equation:

n

(%) —Au = R(x)u’, x e R",



KAZDAN-WARNER TYPE CONDITIONS 267

where A is Euclidean Laplacian, p = (n+2)/(n —2), u > 0 and satisfies
U~ |x|>" near infinity.

We assume that R is bounded, continuous, and radially symmetric,
R = R(r) with r = |x|. Without loss of generality, we may also assume
that there is 7, > 0, such that

(1) R(r) <0 for r<ry,

(ii) R(r)>0 and R'(r) >0, R'(r)£0 for r > ro -

We are going to show that equation (¥¥) has no radical solution.

Assume to the contrary that there is a function u# = u(r) which solves
(#%¥) . Then multiply the both sides of (%) by x-Vu and integrate over the
region Q, = BA(O)\Bro(O) for 4 > r,. By a straightforward calculation,
one can see that the left-hand side becomes

1 2 Ou n 2
(4.1) /3Q (-2—x-u|Vu| —a—yx-Vu> dS+(1—§) /Q \Vul dx

A

and the right-hand side becomes

(1—2)/ Ru‘"“dx—n_z/ x- VR dx
2 QA Ql

2n

(4.2) .

2n

/ x-vRETAS.
aQ,

In order to simplify our result, this time by multiplying the both sides
of (*%¥) by u and integrating over Q, we get

(4.3) / |Vu|2dx—/ ua—udS=/ R dx.
Q, oQ, OV Q,

A

Now let A — oo. By the asymptotic behavior u ~ P2 , the fact

R(r;) =0 and (4.1), (4.2), (4.3) we arrive at

/ (2@ o)+ (5 -1) wi(r) | ds
98, (0)
____n—2/ rR(N ' dx.
2n Jr\g, (0)

Finally to find a contradiction, we apply the maximum principle to the
region BrD(O) . By our assumption on R, we have

(4.4)

Au=—Ru’ >0,

which implies that

u(ry) = gla(lag u,
0
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so that u'(ro) > 0, an obvious contradiction to (4.4). Hence the proof is
complete.
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